
Cryptography Toolbox

So far:

 stream ciphers

 block ciphers

These provide confdentiality, but not integrity

Today:

 cryptographic hash functions

This is a key tool for integrity

2

Message Integrity

Alice Bob

3

Message Integrity

Alice Bob

4

Message Integrity

Alice Bob

5

Message Integrity

Alice Bob

16

Message Integrity

Mallory Bob

17

Message Integrity

Mallory Bob

Any stream of bytes decrypts as something

28

Message Integrity

Alice Bob

29

Message Integrity

Alice Bob

40

Message Integrity

Alice Bob

Putting the key in just one place
works with a mode of operation,
but doesn’t help with a stream cipher

41

Message Integrity

 = H(+)

Alice Bob

42

Message Integrity

 = H(+)

Alice Bob

hash function to summarize message and key

43

Message Integrity

 = H(+)

Alice Bob

hash function to summarize message and key

message authentication code (MAC)

44

Message Integrity

 = H(+)

Alice Bob

hash function to summarize message and key

message authentication code (MAC)

45

Message Integrity

 = H(+)

Alice Bob

hash function to summarize message and key

message authentication code (MAC)
H(+)

56

Hash Functions

A hash function H maps an arbitraily large value to a fxed-sized number

Data-structure usage: fast location of a value

• Use a number an an index into an array

• Collisions are inevitable

58

Hash Functions

A hash function H maps an arbitraily large value to a fxed-sized number

Data-structure usage: fast location of a value

• Use a number an an index into an array

• Collisions are inevitable

Cryptography usage: compact representation of a value

• Use a number as a proxy, potentially hiding the original value

• Collisions should be impossible

60

Hash Functions

A hash function H maps an arbitraily large value to a fxed-sized number

Data-structure usage: fast location of a value

• Use a number an an index into an array

• Collisions are inevitable

Cryptography usage: compact representation of a value

• Use a number as a proxy, potentially hiding the original value

• Collisions should be impossible

H(x) = H(y) ⇒ x = y

61

Hash Functions

A hash function H maps an arbitraily large value to a fxed-sized number

Data-structure usage: fast location of a value

• Use a number an an index into an array

• Collisions are inevitable

Cryptography usage: compact representation of a value

• Use a number as a proxy, potentially hiding the original value

• Collisions should be impossible

How is this possible?

62

Hash Functions

A hash function H maps an arbitraily large value to a fxed-sized number

Data-structure usage: fast location of a value

• Use a number an an index into an array

• Collisions are inevitable

Cryptography usage: compact representation of a value

• Use a number as a proxy, potentially hiding the original value

• Collisions should be infeasible

63

Hash Collisions

If you have a hash array of length 256 and a ideal hash function H,
how many items until you expect to fnd a collision?

Probably that 2 items don't collide:

255
256

 = 99.6%

Probably that 3 items don't collide:

255
256

 ×

254
256

 = 98.8%

Probably that 4 items don't collide:

255
256

 ×

254
256

 ×

253
256

 = 97.6%

67

Hash Collisions

If you have a hash array of length 256 and a ideal hash function H,
how many items until you expect to fnd a collision?

Probability of no collisions:

1 100.0%
2 99.6%
3 98.8%
4 97.6%
5 96.1%
6 94.2%
7 92.0%
8 89.5%
9 86.7%
10 83.6%

11 80.4%
12 76.9%
13 73.3%
14 69.6%
15 65.8%
16 61.9%
17 58.0%
18 54.2%
19 50.4%
20 46.6%

21 43.0%
22 39.5%
23 36.1%
24 32.8%
25 29.7%
26 26.8%
27 24.1%
28 21.6%
29 19.2%
30 17.0%

68

Hash Collisions

If you have a hash array of length 256 and a ideal hash function H,
how many items until you expect to fnd a collision?

Probability of no collisions:

1 100.0%
2 99.6%
3 98.8%
4 97.6%
5 96.1%
6 94.2%
7 92.0%
8 89.5%
9 86.7%
10 83.6%

11 80.4%
12 76.9%
13 73.3%
14 69.6%
15 65.8%
16 61.9%
17 58.0%
18 54.2%
19 50.4%
20 46.6%

21 43.0%
22 39.5%
23 36.1%
24 32.8%
25 29.7%
26 26.8%
27 24.1%
28 21.6%
29 19.2%
30 17.0%

Birthday paradox:
In a room with only 23
people, probably two
people in the room
have the same birthday

69

Hash Collisions

If you have a hash array of length 2N and a ideal hash function H,
how many items until you expect to fnd a collision?

Probability of no collisions with k values:

2N!

2kN(2N - k)!

Approximate k where probability reaches 50%:

2N/2

256 ⇒ N = 8 ⇒ k = 16, which is in the right neighborhood

73

Cryptographic Hash Collisions

For cryptographic purposes, we’re not allocating an array, so we can use a
much larger N

Hash code bits N Expected collsision at

128 264 = 1.8 × 1019

256 2128 = 3.4 × 1038

512 2256 = 1.2 × 1077

Number of atoms in the universe ≈ 1080

76

Cryptographic Hash Assumptions

Needed for a MAC:

H(x) = H(y) ⇒ x = y

Also useful as a secure document checksum

download_me

⇒ c2c594e8d3f81db4b6a9340d5cb1903b2c9e622179ae4955d353bd54c5e3af9c

78

Cryptographic Hash Assumptions

Needed for a MAC:

H(x) = H(y) ⇒ x = y

For some other purposes, we also need

given H(x), cannot compute x

For example, password checks without storing passwords

80

Attack Modes

Known x, try to fnd colliding y

Example: malicious substitute for a download

Find both x and y that collide

Example: convince to accept x, later substitute y

Known H(x), fnd x

Example: extract password from saved hash

83

Standardized Cryptographic Hash Functions

name hash bits status algorithm family

MD5 128 collisions found Merkle–Damgård

SHA-1 160 some collisions found Merkle–Damgård

SHA-2 256 or 512 considered secure Merkle–Damgård

SHA-3 256 or 512 considered secure Keccak

SHA-256 and SHA-512 are the 256-bit and 512-bit variants of SHA-2
SHA3-256 and SHA3-512 are the variants of SHA-3

SHA-3 is intended as a potential drop-in replacement for SHA-2 — in case
a weakness in SHA-2 is discovered

84

MD5

plaintext

85

MD5
64-byte (512-bit) chunk

86

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

87

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

88

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

128 bits

89

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

128 bits

M0 M1 M2 M3 ... M62 M63

M

 + + + + + +

91

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

128 bits

M contains 64 of

Ai

Bi

Ci

Di

 +

Fi

Gi

 + +

Ki

<<<i + Ai+1

Bi+1

Ci+1

Di+1

Mi

92

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

128 bits

M contains 64 of

Ai

Bi

Ci

Di

 +

Fi

Gi

 + +

Ki

<<<i + Ai+1

Bi+1

Ci+1

Di+1

Mi

Picks 32-bit word within 512-bit chunk
Count by 1, then 5, then 3, then 7

93

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

128 bits

M contains 64 of

Ai

Bi

Ci

Di

 +

Fi

Gi

 + +

Ki

<<<i + Ai+1

Bi+1

Ci+1

Di+1

Mi

F0 to F15
(Bi ∧ Ci) ∨ (¬Bi ∧ Di)

F16 to F31
(Bi ∧ Ci) ∨ (Ci ∧ ¬Di)

F32 to F47
Bi ⊕ Ci ⊕ Di

F48 to F63
Ci ⊕ (Bi ∨ ¬Di)

94

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

128 bits

M contains 64 of

Ai

Bi

Ci

Di

 +

Fi

Gi

 + +

Ki

<<<i + Ai+1

Bi+1

Ci+1

Di+1

Mi

abs(sin(i)) × 232

95

MD5
64-byte (512-bit) chunk Pad last using 1, 0s, and message length

init vector M M M M M M M M hash

128 bits

M0 M1 M2 M3 ... M62 M63

M

 + + + + + +

96

Hashing and Passwords

Servers don’t want to know your password...

They want to know that you know it

Store a hash of a password, not the password:

user H(password)
alice d8ef3b7d2e6a8
bob a6fdb8307dbc0
eve 9759a5d1558e4
carol a6fdb8307dbc0

Server has to know password as you’re logging in,
bit it only has to store a hash

99

Hashing and Passwords

Servers don’t want to know your password...

They want to know that you know it

Store a hash of a password, not the password:

user H(password)
alice d8ef3b7d2e6a8
bob a6fdb8307dbc0
eve 9759a5d1558e4
carol a6fdb8307dbc0

Cannot reconstruct alice’s
password from hash

Server has to know password as you’re logging in,
bit it only has to store a hash

100

Hashing and Passwords

Servers don’t want to know your password...

They want to know that you know it

Store a hash of a password, not the password:

user H(password)
alice d8ef3b7d2e6a8
bob a6fdb8307dbc0
eve 9759a5d1558e4
carol a6fdb8307dbc0

Uh oh —
Can tell that bob and carol
have the same password

Server has to know password as you’re logging in,
bit it only has to store a hash

101

Hashing and Passwords

Don't store passwords

Don't store hashed passwords

Store a salted hash of a password:

user salt H(password+salt)
alice adg3fee684 f3b4dd8e2e6a8
bob 992a6df99a 8307a6fbbdac0
eve 1aac7deef0 1558e49229a5d
carol 8a8721fbb1 07dbc0a99db83

102

Hashing and Passwords

Don't store passwords

Don't store hashed passwords

Store a salted hash of a password:

user salt H(password+salt)
alice adg3fee684 f3b4dd8e2e6a8
bob 992a6df99a 8307a6fbbdac0
eve 1aac7deef0 1558e49229a5d
carol 8a8721fbb1 07dbc0a99db83

Randomly generated when password is set

103

Hashing and Passwords

Don't store passwords

Don't store hashed passwords

Store a salted hash of a password:

user salt H(password+salt)
alice adg3fee684 f3b4dd8e2e6a8
bob 992a6df99a 8307a6fbbdac0
eve 1aac7deef0 1558e49229a5d
carol 8a8721fbb1 07dbc0a99db83

Even if bob and carol both have the password passwd,
H(passwd+992a6df99a) ≠ H(passwd+8a8721fbb1)

104

Summary

A cryptographic hash function is a one-way hash function that avoids
collisions

Useful for ensuring message integrity

Useful for perserving evidence but forgetting details

You should use SHA-2

Don’t manage passwords yourself, but if you do, store only salted hashes
of passwords

105

