Cryptography Toolbox

So far:
stream ciphers
block ciphers

These provide confidentiality, but not integrity

Today:
cryptographic hash functions

This is a key tool for integrity

Alice

Message Integrity

o\

Bob

Alice

O~

Message Integrity

Alice

O~

) —

Message Integrity

Alice

O~

Message Integrity

16

Mallory

Message Integrity

17

O

Mallory

Message Integrity

Any stream of bytes decrypts as something

28

Message Integrity

29

O~

Message Integrity

40

Message Integrity

Putting the key © ~ in just one place
works with a mode of operation,
but doesn’t help with a stream cipher

41

Message Integrity

B - N +O)

42

Message Integrity

hash function to summarize message and key

N - N +O)

A\

Q’/_m’

43

Message Integrity

hash function to summarize message and key

N - N +O)

message authentication code (MAC)

A\

A=

44

Message Integrity

hash function to summarize message and key

N - N +O)

message authentication code (MAC)

¢

A=

45

Message Integrity

hash function to summarize message and key

N - N +O)

message authentication code (MAC)

HO -+)

[J
N | _

A== =

56

Hash Functions

A hash function H maps an arbitraily large value to a fixed-sized number

Data-structure usage: fast location of a value
* Use a number an an index into an array

* Collisions are inevitable

58

Hash Functions

A hash function H maps an arbitraily large value to a fixed-sized number

Data-structure usage: fast location of a value
* Use a number an an index into an array

* Collisions are inevitable

Cryptography usage: compact representation of a value
* Use a number as a proxy, potentially hiding the original value

* Collisions should be impossible

60

Hash Functions

A hash function H maps an arbitraily large value to a fixed-sized number

Data-structure usage: fast location of a value
* Use a number an an index into an array

* Collisions are inevitable

Cryptography usage: compact representation of a value
* Use a number as a proxy, potentially hiding the original value

* Collisions should be impossible

Hx)=H(y) > x=y

61

Hash Functions

A hash function H maps an arbitraily large value to a fixed-sized number

Data-structure usage: fast location of a value
* Use a number an an index into an array

* Collisions are inevitable

Cryptography usage: compact representation of a value
* Use a number as a proxy, potentially hiding the original value

* Collisions should be impossible

How is this possible?

62

Hash Functions

A hash function H maps an arbitraily large value to a fixed-sized number

Data-structure usage: fast location of a value
* Use a number an an index into an array

* Collisions are inevitable

Cryptography usage: compact representation of a value
* Use a number as a proxy, potentially hiding the original value

 Collisions should be infasible

63

Hash Collisions

If you have a hash array of length 256 and a ideal hash function H,
how many items until you expect to find a collision?

Probably that 2 items don't collide: % =99.6%
: . . 255 254 _
Probably that 3 items don't collide: 756 X 756 = 98.8%
255 _ 254 _ 253

Probably that 4 items don't collide:

756 X 256 X 256 = 2 1:0%

67

Hash Collisions

If you have a hash array of length 256 and a ideal hash function H,
how many items until you expect to find a collision?

Probability of no collisions:

1 100.0% 1T 80.4% 21 43.0%
99.6% 12 76.9% 22 395%
98.8% 13 73.3% 23 36.1%
97.6% 14 69.6% 24 32.8%
96.1% 15 65.8% 25 29.7%
94 .2% 16 61.9% 26 26.8%
92.0% 17 58.0% 27 24.1%
89.5% 18 54.2% 28 21.6%
86.7% 19 50.4% 29 192%
83.6% 20 46.6% 30 17.0%

OO XRXINWN B W

[

Hash Collisions

If you have a hash array of length 256 and a ideal hash function H,
how many items until you expect to find a collision?

Probability of no collisions:

1 100.0% 11 80.4% 21 43.0%

99.6% 12 76.9% 22 39.5%

98.8% 13 73.3% 23 36.1% Birthday paradox:
97.6% 14 69.6% 24 32.8%
96.1% 15 65.8% 25 29.7%
942% 16 619% 26 268% PeoPple, probably two
92.0% 17 58.0% 27 24.1% people in the room
89.5% 18 54.2% 28 21.6% have the same birthday
86.7% 19 50.4% 29 192%

83.6% 20 46.6% 30 17.0%

In a room with only 23

OO XRXINWN B W

[

69

Hash Collisions

If you have a hash array of length 2N and a ideal hash function H,
how many items until you expect to find a collision?

Probability of no collisions with k values:
2N
2NN _K)!

Approximate k where probability reaches 50%:
N2

256 = N =8 = k = 16, which is in the right neighborhood

73

Cryptographic Hash Collisions

For cryptographic purposes, we’re not allocating an array, so we can use a

much larger N

Hash code bits N
128
256
512

Expected collsision at
204 =18 x 10"

2128 =34 x 10

230 =12x10"

Number of atoms in the universe = 1080

76

Cryptographic Hash Assumptions

Needed for a MAC:

Hx)=H(y) = x=y

Also useful as a secure document checksum

= Cc2c594e8d3f81db4b6a9340d5cb1903b2c9e622179ae4955d353bd54c5e3af9c

download me

78

Cryptographic Hash Assumptions

Needed for a MAC:

Hx)=H(y) = x=y

For some other purposes, we also need

given H(x), cannot compute X

For example, password checks without storing passwords

80

Attack Modes

Known x, try to find colliding y

Example: malicious substitute for a download

Find both x and y that collide

Example: convince to accept x, later substitute y

Known H(x), find x

Example: extract password from saved hash

83

Standardized Cryptographic Hash Functions

name hash bits status algorithm family
MD5 128 collisions fpund Merkle-Damgard
SHA-1 1|60 some collisions pund Merkle-Damgard

SHA-2 256 or 512 considered secure Merkle-Damgard
SHA-3 256 or 512 considered secure Keccak

SHA-256 and SHA-512 are the 256-bit and 512-bit variants of SHA-2
SHA3-256 and SHA3-512 are the variants of SHA-3

SHA-3 is intended as a potential drop-in replacement for SHA-2 — in case
a weakness in SHA-2 is discovered

84

MD5

plaintext

85

64-byte (512-bit) chunk

MD5

86

64-byte (512-bit) chunk

MD5

Pad last using |, Os, and message length

87

64-byte (512-bit) chunk

MD5

Pad last using |, Os, and message length

init vector> M —>M—> M

M—)M—»M—»M—)M—»M

88

64-byte (512-bit) chunk

MD5

Pad last using |, Os, and message length

128 bits

init vector> M —>M—> M

M—)M—»M—»M—)M—»M

89

64-byte (512-bit) chunk

MD5

Pad last using |, Os, and message length

128 bits

init vector> M —>M—> M

91

MD5
64-byte (512-bit) chunk Pad last using |, Os, and message length

128 bits

initvector—)M—)M—)M—»M—»M—»M—»M—»M—»M

contains 64 of

\ 4
\ 4

64-byte (512-bit) chunk

128 bits

MD5

Pad last using |, Os, and message length

init vector

contains 64 of

|

|

|

|

|

|

|

|

—> M

M

—>|

M

—>

M

—>|

M

—>|

M

—>|

M

~iE)

Picks 32-bit word within 512-bit chunk
Count by I, then 5, then 3, then 7

\ 4

\ 4

93

64-byte (512-bit) chunk

128 bits

contains 64 of

MD5

Pad last using |, Os, and message length

init vector—>|

;

A

~EE)

\ 4

Ai+1
R...
Fy to Fy5 F6 to F3;
- BiAnCG)V(EB;AD) (BiAC) V(CGA-D)
F3; to Fyy Fys to Fe3

Bi D Ci D Di Ci D (Bi V —IDi)
——

94

MD5
64-byte (512-bit) chunk Pad last using |, Os, and message length

128 bits

initvector—)M—)M—)M—»M—»M—»M—»M—»M—»M

contains 64 of |

\ 4
\ 4

abs(sin(i)) x 232 \

N

D; ~>Diy

64-byte (512-bit) chunk

MD5

Pad last using |, Os, and message length

128 bits

init vector> M —>M—> M

96

Hashing and Passwords

Servers don’t want to know your password...

They want to know that you know it

Store a hash of a password, not the password:

user H(password)

alice | dBef3b’7d2e6a8
bob a6fdb8307dbcO
eve 9759a5d1558e4
carol | a6f£db8307dbcO

Server has to know password as you're logging in,
bit it only has to store a hash

99

Hashing and Passwords

Servers don’t want to know your password...

They want to know that you know it

Store a hash of a password, not the password:

user H(password)

alice | dBef3b’7d2e6a8
bob | a6fdb8307dbco| Password from hash
eve 9759a5d1558e4
carol | a6f£db8307dbcO

Cannot reconstruct alice’s

Server has to know password as you're logging in,
bit it only has to store a hash

100

Hashing and Passwords

Servers don’t want to know your password...

They want to know that you know it

Store a hash of a password, not the password:

user H(password)

alice | dBef3b7d2e6a8

bob abfdb8307dbcO

eve 9759%9a5d1558e4
carol a6fdb8307dch|

Uh oh —
Can tell that bob and carol
have the same password

Server has to know password as you're logging in,

bit it only has to store a hash

101

Hashing and Passwords

Don't store passwords

Don't store hashed passwords

Store a salted hash of a password:

user salt H(password+salt)

alice | adg3fee684 | £3b4ddd8e2eba8
bob 992a6df99%a | 8307a6fbbdacO
eve laac7deef(| 1558e49229a5d
carol | 8a8721fbbl | 07dbc0a99db83

102

Hashing and Passwords

Don't store passwords

Don't store hashed passwords

Store a salted hash of a password:

user salt H(password+salt)
alice | adg3fee684 | £3b4dd8e2e6a8

bob 992a06df9%a | 8307a6fbbdacO
eve laac/deefO | 1558e49229abd
carol | 8a8721fbbl | 07dbc0a99db83

Randomly generated when password is set

103

Hashing and Passwords

Don't store passwords

Don't store hashed passwords

Store a salted hash of a password:

user salt H(password+salt)

alice | adg3fee684 | £3b4ddd8e2eba8
bob 992a6df99%a | 8307a6fbbdacO
eve laac7deef(| 1558e49229a5d
carol | 8a8721fbbl | 07dbc0a99db83

Even if bob and carol both have the password passwd,
H(passwd+992a6df99a) # H(passwd+8a8721fbbl)

104

Summary

A cryptographic hash function is a one-way hash function that avoids
collisions

Useful for ensuring message integrity

Useful for perserving evidence but forgetting details

You should use SHA-2

Don’t manage passwords yourself, but if you do, store only salted hashes
of passwords

105

