
TCP Congestion Control

Congestion control in TCP avoids overwhelming a network

• how often to send ⇒ timeout

• how much to send ⇒ window

3

TCP Timeout

TCP timeout uses an estimate of RTT and its variance:

timeout = RTTest + 4 × varest

• RTTest is an exponentially weighted moving average:

RTTest = (1-α) × RTTest + α × RTTmeasured

TCP uses α =
1
8

• varest is similarly weighted:

varest = (1-β) × varest + β × ⎸RTTmeasured - RTTest⎸

TCP uses β =
1
4

8

TCP Congestion Control

Flow control relies on rwnd and window ≤ rwnd

9

TCP Congestion Control

Flow control relies on rwnd and window ≤ rwnd

from TCP header

10

TCP Congestion Control

Flow control relies on rwnd and window ≤ rwnd

Congestion control uses cwnd and window ≤ cwnd

• start cwnd at maximum segment size, MSS

• grow until ssthresh, which starts large, but can adapt

12

TCP Congestion Control

Flow control relies on rwnd and window ≤ rwnd

Congestion control uses cwnd and window ≤ cwnd

• start cwnd at maximum segment size, MSS

• grow until ssthresh, which starts large, but can adapt

about 1.5KB

13

TCP Congestion Control

Flow control relies on rwnd and window ≤ rwnd

Congestion control uses cwnd and window ≤ cwnd

• start cwnd at maximum segment size, MSS

• grow until ssthresh, which starts large, but can adapt

start at 64KB

14

TCP Slow Start

sender receiver

15

TCP Slow Start

sender receiver

16

TCP Slow Start

sender receiver

17

TCP Slow Start

sender receiver
Initially, cwnd = MSS

18

TCP Slow Start

sender receiver
Initially, cwnd = MSS

After each ACK, cwnd += MSS

⇒ double cwnd each RTT

19

TCP Slow Start

sender receiver
Initially, cwnd = MSS

After each ACK, cwnd += MSS

⇒ double cwnd each RTT

End slow start when
cwnd = ssthresh

20

TCP Connection States

Slow
start

Congestion
avoidance

Fast
recovery

cwnd > ssthresh

timeout

dupACKs == 3

timeout

dupACKs == 3

new ACK

21

TCP Connection States

Slow
start

Congestion
avoidance

Fast
recovery

cwnd = MSS
ssthresh = 64kb

new ACK

cwnd = cwnd+MSS

timeout

ssthresh = cwnd/2
cwnd = MSS

cwnd > ssthresh

timeout

ssthresh = cwnd/2
cwnd = MSS

dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS

timeout

ssthresh = cwnd/2
cwnd = MSS

dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS

new ACK

cwnd = ssthresh

new ACK

cwnd = cwnd+
MSS
cwnd

×MSS

duplicate ACK

cwnd = cwnd+MSS

22

TCP Connection States

Slow
start

Congestion
avoidance

Fast
recovery

cwnd = MSS
ssthresh = 64kb
dupACKs = 0

new ACK

cwnd = cwnd+MSS
dupACKs = 0
send_new()

duplicate ACK

dupACKs++

timeout

ssthresh = cwnd/2
cwnd = MSS
dupACKs = 0
resend_mssing()

cwnd > ssthresh

timeout

ssthresh = cwnd/2
cwnd = MSS
dupACKs = 0
resend_mssing()

dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS
resend_mssing()

timeout

ssthresh = cwnd/2
cwnd = MSS
dupACKs = 0
resend_mssing() dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS
resend_mssing()

new ACK

cwnd = ssthresh
dupACKs = 0

new ACK

cwnd = cwnd+
MSS
cwnd

×MSS

dupACKs = 0
send_new()

duplicate ACK

dupACKs++

duplicate ACK

cwnd = cwnd+MSS
send_new()

23

cwnd Adjustment over Time

c
w
n
d

time

slow start
convengestion avoidance
fast recovery

Additive increase, multiplicative decrease (AIMD)

25

cwnd Adjustment over Time

c
w
n
d

time

slow start
convengestion avoidance
fast recovery

Expect average cwnd to be 75% of maximum

26

cwnd Adjustment over Time

c
w
n
d

time

slow start
convengestion avoidance
fast recovery

Fair, because multiple senders tend toward same rate

27

Issues with TCP

TCP is great for most purposes, but it’s not perfect...

... for example, in the case of web services

29

Issues with TCP

Parking-lot problem

10.18.230.214

30

Issues with TCP

Parking-lot problem

172.9.15.132

41

Issues with TCP

Parking-lot problem

172.9.15.132

New IP ⇒ must reconnect

42

Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

html css png png

Getting parts in order can delay the whole page

44

Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

html css png png

A dropped packet delays everything further

45

Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

HTTP/2 allows interleaving within a reply...

46

Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

but that doesn’t solve the dropped-packet problem

47

Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

html

css

png

png

Multiple connections work, but each takes time to set up

48

Issues with TCP

Handshake hell

client server

SYN

SYN

data

49

Issues with TCP

Handshake hell

client server

SYN

SYN

TLS begin

TLS setup

TLS setup

...

50

Issues with TCP

Ossifcation

TCP TCP TCP

TCP TCP

51

QUIC

QUIC: Quick UDP Internet Connections

• implemented in Chrome in 2012

• standardized in 2021 as RFC 9000

• implemented in major browsers

52

QUIC

QUIC: Quick UDP Internet Connections

• builds on UDP

• connection-oriented based on a connection ID
not host and port

• built-in encryption, covers more headers

• can interleave fles without dropped-packet interactions

53

QUIC

client server

10.18.230.214 connID=C TLS begin

connID=C TLS setup

...

...

54

QUIC

client server

10.18.230.214 connID=C TLS begin

connID=C TLS setup

...

...

built-in encryption moves setup along

55

QUIC

client server

10.18.230.214 connID=C TLS begin

connID=C TLS setup

...

...
172.9.15.132 connID=C data

connID=C data

connID=C data

56

QUIC

client server

10.18.230.214 connID=C TLS begin

connID=C TLS setup

...

...
172.9.15.132 connID=C data

connID=C data

connID=C data

Connection ID allows continue without setup
from a new client address

57

QUIC

Concurrent streams are handled at the packet level within a connection

58

QUIC

Concurrent streams are handled at the packet level within a connection

Dropped packet does not stall other streams

59

Summary

Flow control avoids overwhelming the other end of a connection

Congestion control avoids overwhelming the network as a whole

TCP states for congestion control:
• slow start
• congestion avoidance
• fast recovery

TCP isn’t always the best solution, it and can suffer from
handshake hell,
the parking-lot problem, and
the head-of-line problem.

60

