Congestion control in TCP avoids overwhelming a network

- how often to send \Rightarrow timeout
- how much to send ⇒ window

TCPTimeout

TCP timeout uses an estimate of RTT and its variance:

timeout = RTT_{est} + $4 \times var_{est}$

• RTT_{est} is an exponentially weighted moving average:

$$RTT_{est} = (1-\alpha) \times RTT_{est} + \alpha \times RTT_{measured}$$
$$TCP \text{ uses } \alpha = \frac{1}{8}$$

• var_{est} is similarly weighted:

$$\operatorname{var}_{est} = (1-\beta) \times \operatorname{var}_{est} + \beta \times |\operatorname{RTT}_{measured} - \operatorname{RTT}_{est}|$$

TCP uses $\beta = \frac{1}{4}$

Flow control relies on rwnd and window ≤ rwnd

Flow control relies on rwnd and window ≤ rwnd

Congestion control uses cwnd and window ≤ cwnd

- \bullet start cwnd at maximum segment size, <code>MSS</code>
- grow until ssthresh, which starts large, but can adapt

Flow control relies on rwnd and window < rwnd

Congestion control uses cwnd and window ≤ cwnd

• start cwnd at maximum segment size, MSS < about 1.5KB

• grow until ssthresh, which starts large, but can adapt

Flow control relies on rwnd and window ≤ rwnd

Congestion control uses cwnd and window ≤ cwnd

- start cwnd at maximum segment size, MSS
- grow until ssthresh, which starts large, but can adapt

Initially, cwnd = MSS

Initially, cwnd = MSS

- After each ACK, cwnd += MSS
 - ⇒ double cwnd each RTT

Initially, cwnd = MSS

After each ACK, cwnd += MSS

⇒ double cwnd each RTT

End slow start when
cwnd = ssthresh

TCP Connection States

TCP Connection States

TCP Connection States

Additive increase, multiplicative decrease (AIMD)

Expect average cwnd to be 75% of maximum

Fair, because multiple senders tend toward same rate

TCP is great for most purposes, but it's not perfect...

... for example, in the case of web services

Parking-lot problem

Parking-lot problem

Parking-lot problem

Head-of-line problem

A typical web page needs multiple files:

Getting parts in order can delay the whole page

Head-of-line problem

A typical web page needs multiple files:

A dropped packet delays everything further

Head-of-line problem

A typical web page needs multiple files:

HTTP/2 allows interleaving within a reply...

Head-of-line problem

A typical web page needs multiple files:

but that doesn't solve the dropped-packet problem

Head-of-line problem

A typical web page needs multiple files:

Multiple connections work, but each takes time to set up

Handshake hell

Handshake hell

Ossification

QUIC: Quick UDP Internet Connections

- implemented in Chrome in 2012
- standardized in 2021 as RFC 9000
- implemented in major browsers

QUIC: Quick UDP Internet Connections

- builds on UDP
- connection-oriented based on a connection ID not host and port
- built-in encryption, covers more headers
- can interleave files without dropped-packet interactions

Concurrent streams are handled at the packet level within a connection

Concurrent streams are handled at the packet level within a connection

Summary

Flow control avoids overwhelming the other end of a connection

Congestion control avoids overwhelming the network as a whole

TCP states for congestion control:

- slow start
- congestion avoidance
- fast recovery

TCP isn't always the best solution, it and can suffer from handshake hell, the parking-lot problem, and the head-of-line problem.