
TCP Congestion Control

Congestion control in TCP avoids overwhelming a network

• how often to send ⇒ timeout

• how much to send ⇒ window
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TCP Timeout

TCP timeout uses an estimate of RTT and its variance:

timeout   =   RTTest   +   4 × varest

• RTTest is an exponentially weighted moving average:

RTTest   =   (1-α) × RTTest   +   α × RTTmeasured

TCP uses α = 
1
8

• varest is similarly weighted:

varest   =   (1-β) × varest   +   β × ⎸RTTmeasured - RTTest⎸

TCP uses β = 
1
4
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TCP Congestion Control

Flow control relies on   rwnd   and   window ≤ rwnd
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TCP Congestion Control

Flow control relies on   rwnd   and   window ≤ rwnd

from TCP header
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TCP Congestion Control

Flow control relies on   rwnd   and   window ≤ rwnd

Congestion control uses  cwnd   and   window ≤ cwnd

• start cwnd at maximum segment size, MSS

• grow until ssthresh, which starts large, but can adapt

12



TCP Congestion Control

Flow control relies on   rwnd   and   window ≤ rwnd

Congestion control uses  cwnd   and   window ≤ cwnd

• start cwnd at maximum segment size, MSS

• grow until ssthresh, which starts large, but can adapt

about 1.5KB
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TCP Congestion Control

Flow control relies on   rwnd   and   window ≤ rwnd

Congestion control uses  cwnd   and   window ≤ cwnd

• start cwnd at maximum segment size, MSS

• grow until ssthresh, which starts large, but can adapt

start at 64KB

14



TCP Slow Start

sender receiver
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TCP Slow Start

sender receiver
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TCP Slow Start

sender receiver
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TCP Slow Start

sender receiver
Initially, cwnd = MSS
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TCP Slow Start

sender receiver
Initially, cwnd = MSS

After each ACK, cwnd += MSS

⇒ double cwnd each RTT
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TCP Slow Start

sender receiver
Initially, cwnd = MSS

After each ACK, cwnd += MSS

⇒ double cwnd each RTT

End slow start when
cwnd = ssthresh
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TCP Connection States

Slow
start

Congestion
avoidance

Fast
recovery

cwnd > ssthresh

timeout

dupACKs == 3

timeout

dupACKs == 3

new ACK
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TCP Connection States

Slow
start

Congestion
avoidance

Fast
recovery

cwnd = MSS
ssthresh = 64kb

new ACK

cwnd = cwnd+MSS

timeout

ssthresh = cwnd/2
cwnd = MSS

cwnd > ssthresh

timeout

ssthresh = cwnd/2
cwnd = MSS

dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS

timeout

ssthresh = cwnd/2
cwnd = MSS

dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS

new ACK

cwnd = ssthresh

new ACK

cwnd = cwnd+
MSS
cwnd

×MSS

duplicate ACK

cwnd = cwnd+MSS
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TCP Connection States

Slow
start

Congestion
avoidance

Fast
recovery

cwnd = MSS
ssthresh = 64kb
dupACKs = 0

new ACK

cwnd = cwnd+MSS
dupACKs = 0
send_new()

duplicate ACK

dupACKs++

timeout

ssthresh = cwnd/2
cwnd = MSS
dupACKs = 0
resend_mssing()

cwnd > ssthresh

timeout

ssthresh = cwnd/2
cwnd = MSS
dupACKs = 0
resend_mssing()

dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS
resend_mssing()

timeout

ssthresh = cwnd/2
cwnd = MSS
dupACKs = 0
resend_mssing() dupACKs == 3

ssthresh = cwnd/2
cwnd = ssthresh+3×MSS
resend_mssing()

new ACK

cwnd = ssthresh
dupACKs = 0

new ACK

cwnd = cwnd+
MSS
cwnd

×MSS

dupACKs = 0
send_new()

duplicate ACK

dupACKs++

duplicate ACK

cwnd = cwnd+MSS
send_new()
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cwnd  Adjustment over Time

c
w
n
d

time

slow start
convengestion avoidance
fast recovery

Additive increase, multiplicative decrease (AIMD)
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cwnd  Adjustment over Time

c
w
n
d

time

slow start
convengestion avoidance
fast recovery

Expect average cwnd to be 75% of maximum
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cwnd  Adjustment over Time

c
w
n
d

time

slow start
convengestion avoidance
fast recovery

Fair, because multiple senders tend toward same rate
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Issues with TCP

TCP is great for most purposes, but it’s not perfect...

... for example, in the case of web services
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Issues with TCP

Parking-lot problem

10.18.230.214
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Issues with TCP

Parking-lot problem

172.9.15.132
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Issues with TCP

Parking-lot problem

172.9.15.132

New IP ⇒ must reconnect
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Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

html css png png

Getting parts in order can delay the whole page
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Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

html css png png

A dropped packet delays everything further
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Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

HTTP/2 allows interleaving within a reply...
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Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

but that doesn’t solve the dropped-packet problem
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Issues with TCP

Head-of-line problem

A typical web page needs multiple fles:

html

css

png

png

Multiple connections work, but each takes time to set up
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Issues with TCP

Handshake hell

client server

SYN

SYN

data
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Issues with TCP

Handshake hell

client server

SYN

SYN

TLS begin

TLS setup

TLS setup

...
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Issues with TCP

Ossifcation

TCP TCP TCP

TCP TCP
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QUIC

QUIC: Quick UDP Internet Connections

• implemented in Chrome in 2012

• standardized in 2021 as RFC 9000

• implemented in major browsers
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QUIC

QUIC: Quick UDP Internet Connections

• builds on UDP

• connection-oriented based on a connection ID
not host and port

• built-in encryption, covers more headers

• can interleave fles without dropped-packet interactions

53



QUIC

client server

10.18.230.214 connID=C  TLS begin

connID=C  TLS setup

...

...
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QUIC

client server

10.18.230.214 connID=C  TLS begin

connID=C  TLS setup

...

...

built-in encryption moves setup along
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QUIC

client server

10.18.230.214 connID=C  TLS begin

connID=C  TLS setup

...

...
172.9.15.132 connID=C  data

connID=C  data

connID=C  data
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QUIC

client server

10.18.230.214 connID=C  TLS begin

connID=C  TLS setup

...

...
172.9.15.132 connID=C  data

connID=C  data

connID=C  data

Connection ID allows continue without setup
from a new client address
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QUIC

Concurrent streams are handled at the packet level within a connection
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QUIC

Concurrent streams are handled at the packet level within a connection

Dropped packet does not stall other streams
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Summary

Flow control avoids overwhelming the other end of a connection

Congestion control avoids overwhelming the network as a whole

TCP states for congestion control:
• slow start
• congestion avoidance
• fast recovery

TCP isn’t always the best solution, it and can suffer from
handshake hell,
the parking-lot problem, and
the head-of-line problem.
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