
Using a Safe Language

Enough with the buffer overfows!

Let’s use a safe language, where overfows are not possible*

* as long as there are no bugs in the language† implementation

†
 or libraries that the language uses

Safe means no undefned behavior, so you can reason in terms of source
without considering generated machine code

A safe language can be misused so that it allows a code injection attack

5

A JavaScript-Based Server

See server.js

6

Lookup via Eval

function lookup(name, info) {
 try {
 // Use `eval` to get any field. How convenient!
 return eval("directory['" + name + "']." + info);
 } catch (error) {
 console.log(error);
 return "lookup failed";
 }
}

7

Lookup via Eval

function lookup(name, info) {
 try {
 // Use `eval` to get any field. How convenient!
 return eval("directory['" + name + "']." + info);
 } catch (error) {
 console.log(error);
 return "lookup failed";
 }
}

No gurantee that input
is just a feld name

This implementation is susceptible to a code injection attack
curl "http://localhost:8085/?name=Alice&info=info%2Badmin_password&lookup=Lookup"

The frst rule of using eval: do not use eval

��

Lookup via Dictionary Key

function lookup(name, info) {
 try {
 return directory[name][info];
 } catch (error) {
 console.log(error);
 return "lookup failed";
 }
}

��

Lookup via Dictionary Key

function lookup(name, info) {
 try {
 return directory[name][info];
 } catch (error) {
 console.log(error);
 return "lookup failed";
 }
}

Still could be something like
"__proto__" to access
object internals

All inputs need to be validated and/or sanitized on the server side

��

Lookup with Validated Key

function lookup(name, info) {
 try {
 if (is_valid_field_name(info))
 return directory[name][info];
 else
 throw new Error("invalid field")
 } catch (error) {
 console.log(error);
 return "lookup failed";
 }
}

��

HTML Injection

123456

res.end("<html>"
 + "<body>"
 + info
 + "</body>"
 + "</html>");

Unsanitized input as unescaped output creates the possibility of an
HTML injection attack

The injected HTML could include JavaScript code that runs in the browser of anyone who looks for
Carol’s phone number

�6

Validation

Client-side validation

e.g., using JavaScript to check text before sending

An important component of a good user interface

Server-side validation

e.g., is_valid_field and sanitize

An import component of security

��

Code at Run Time

Using eval is usually just bad, but the case of HTML illustrates how
run-time generation of some code is often necessary

Another common code-generation case: accessing a database

��

Databases

A relational database keeps data in tables

name email phone secret
Alice alice@example.com 801-555-1212 clock tower
Bob bob@example.com 385-555-1212 house
...

To handle large amounts of data, there are many special implementation
techniques for representing and managing theses tables

��

Database Operations

The suite of operations on a database is known as CRUD:

Create: create a table or new rows in a table
Read: fnd data in tables
Update: change data in tables
Delete: remove a table or rows from a table

Combinations of operations can be complex, so to encode CRUD requests,
there’s a whole language: Structured Query Language (SQL)

��

SQL Examples: Managing Tables

CREATE TABLE people (name TEXT,
 email TEXT,
 phone TEXT,
 secret TEXT)

DROP TABLE people

��

SQL Examples: Querying Tables

SELECT phone FROM people WHERE name='Alice'

SELECT * FROM people WHERE name='Alice' OR secret='house'

�5

SQL Examples: Updating Tables

INSERT INTO people VALUES ('Alice',
 'alice@example.com',
 '801-555-1212',
 'clock tower')

DELETE FROM people WHERE name='Bob'

�6

A JavaScript Server using a Database

See server_db.js

�7

SQL Injection Attacks

Part of the problem here is using a multi-statement exec where a
single-statement run is better

��

Building SQL Commands

Instead of building a string with values, use substitutions as supported by a
SQL binding

db.run("INSERT INTO people VALUES (?, ?, ?, ?)",
 [name, email, phone, secret])

if (is_valid_field_name(info)) {
 db.get("SELECT " + info + " FROM people WHERE name=?", [name],
 )
}

��

JSON in JavaScript

JSON is a format for data exchange that is often used in JavaScript systems

 { "name": "Alice", "number": "801-555-1212" }

Since JSON looks like JavaScript, it suggests

function parse_json(str) {
 return eval("(" + str + ")");
}

Obviously, don’t do that, and instead use JSON.parse, which is roughly

function parse(str) {
 validate_json(str);
 return eval("(" + str + ")");
}

��

Summary

Code-injection attacks are not just for unsafe languages

• HTML injection vulnerabilities remain common

• SQL injection vulnerabilities remain common

Try a web search for “SQL injection news”

The general problem is that code is data, and data can become code

Be alert for contexts that use data as code:

• When possible, switch to an API that doesn’t do that

• Take care parsing when validating and/or sanitizing input

• Take care printing when sanitizing and/or escaping output

�5

Little Bobby Tables

https://xkcd.com/327/

�6

