Block Ciphers

A block cipher encodes a plaintext in blocks of N bits

Each N-bit |plaintext

as opposed to a stream cipher, which can work on a stream of bits

becomes an N-bit [d[s]alSgd ¢

Which is better, a stream cipher or block cipher?

* Neither

* It's complicated

* Just use AES, which is a block cipher

Block Ciphers

A block cipher encodes a plaintext in blocks of N bits

Each N-bit

plaintext

as opposed to a stream cipher, which can work on a stream of bits

becomes an N-bit fdls]allad<s

We'll look at two block ciphers:

Data Encryption Standard (DES): older, broken at original key size

Advanced Encryption Standard (AES): newer, very widely used

DES

Developed in 1970s at IBM, standardized with input from NSA
64-bit block with 56-bit key

Three main components:

* Key schedule generated PRNG-like from the key

<= B B B2y e S
* |16 rounds of Feistel structure mixing with key schedule as input

* Feistel function F to implement mixing

Following pictures are based on
https://en.wikipedia.org/wiki/Data Encryption Standard

DES Key Schedule

BT
T
<<l<ow e <<<

PC2
<<l<1w (-<<<1

PC2

®

LT

<L <L
ISw (’ 15

PC2 —K;5)

DES Key Schedule

Permuted Choice: V=
shuffle and pick 56 of 64 bits, PC1

then split into two ¥ ¥

l BE

<KL <KL
_ lw (’ 1
l PC2

®

<<l< <<l<
wPCZK_—>®@

Different rotation amount each step

DES Key Schedule

PC1
—
<<‘<OW r<<<0
l PC2
A 4
<<<1w (-<<<1
l PC2
\4
<<K<j;35 <<K;5

R

PC2

®

11

shuffle and pick 48 of 56 bits

DES Key Schedule

r_/

PCl1

<<<

R

RE

l

<<<p

PC2

<<<

|

!

<<<

RR

PC2

<<<15

!

<<<q5

R

PC2

®

12

shuffle and pick 48 of 56 bits

DES Key Schedule

r_/

PCl1

<<<

R

RE

l

<<<p

PC2

<<<

RR

|

!

<<<

PC2

<<<15

!

R

<<<q5

PC2

XD

Output is sequence
of K;, each 48 bits

13

DES Feistel Structure

plaintext

14

Split plaintext into 32-bit halves

DES Feistel Structure

plaintext

15

DES Feistel Structure

New left half is old right half

plaintext

16

DES Feistel Structure

plaintext

New right half depends on
both old halves as mixed
through K and F

17

DES Feistel Structure

plaintext

Feistel function F is one-way

18

DES Feistel Structure

’ plaintext ‘
v

[Lo [R |

29

DES Feistel Structure

40

DES Feistel Structure

@ Decode-step right half is

previous left half

41

Decode-step left half depends on
both previous halves as mixed
through K and F

DES Feistel Structure

4?2

DES Feistel Structure

53

DES Feistel Structure

64

DES Feistel Structure

Lis Ris T o1

® |®
—

Lis Ri6 ! gl

DES Feistel Structure

|

plaintext

|

[Lo [R |

L Lo | Ry |

| Lis | R |

|

| Lis | R |

|

plaintext

76

DES Feistel Structure

’ plaintext ‘ W
v

(L [R | [| R
&Ko K3
%V %V
R [L [R Encode and decode
XD K9 .
! ! are the same function,
ﬁ) just using the key schedule

in opposite order

’ plaintext ‘

77

32 bits

DES Feistel Function

48 bits

32 bits

78

32 bits

DES Feistel Function

48 bits

32 bits

79

32 bits

DES Feistel Function

48 bits

32 bits

80

32 bits

DES Feistel Function

48 bits

32 bits

81

3DES

By the 1990s, a 56-bit key was too small

3DES is running DES three times:

Enc3pgs(“

P~ = < A B C>

plaintext

) = Encpgs(K A, Decpgs(Kp, Encpgs(K e,

plaintext

)

83

DES Issues

Algorithm was designed for hardware

P bit permutations are a pain to implement in software

with and, or, <<, and >>

Distrust of the secret design process

and especially the

S

S

84

AES

Developed by an open competition in the 1990s run by NIST
Variant of an algorithm called Rijndael

128-bit block with 128-, 192-, or 256-bit key

Main components are analogous to DES:

» Key schedule generated from the key
different PRNG-like generator

* |1, I3, or |5 rounds of mixing using key schedule as input

different mixing function

* Reversible mixing function R (instead of Feistel structure)

includes @ of key from schedule

86

AES

Developed by an open competition in the 1990s run by NIST
Variant of an algorithm called Rijndael

128-bit block with 128-, 192-, or 256-bit key

Main components are analogous to DES: Each K, is 128 bits

» Key schedule generated from the key
different PRNG-like generator

* |1, I3, or |5 rounds of mixing using key schedule as input

different mixing function

* Reversible mixing function R (instead of Feistel structure)

includes @ of key from schedule

87

DES versus AES Structure

AES ’ plailltext ‘

DES ’ *plaintext* ‘
| Lo | Ry | [28-bit key
| L,

DES versus AES Structure

plaintext ‘

DES | planwext | AES | phin
| Lo | Ry | [28-bit key
& | Ly |
%’
L L [R | L, |
Kp) Xy
: i
Reversible R

K5
T ,

E

89

DES versus AES Structure
plaintext
L Z

Lo

DES ’ *plaintext* ‘ AES ’ plailltext ‘
[Lo | Ro | 128-bit key | ‘ %KP)
L

KD]
L
E 1
First round uses @ for R

90

DES versus AES Structure
plaintext

v
DES ’ *plaintext* ‘ AES ’ plailltext ‘ Lo
1o | Ro | 128-bit key ’ ‘ %K?)
& =
| &) i
ﬁ R L,
. L | R | | L, | First round uses @ for R
XD Xy
: i
Last round R’ omits a step
& Lo
Reversible R
[Lo |
RI

91

AES Round

View the state as an 4 X 4 array of bytes:

92

AES Round

starts as |plaintext

View the state as an 4 X 4 array of bytes:

by bs bg b3

b3 b7 by bys

R(K;, state) = MixColumns(ShiftRows(SubBytes(state))) &

R'(I;, state) = ShiftRows(SubBytes(state)) @ K;

i

95

SubBytes looks up a substitution in this table, which is based on a
particular polynomial:

63
ca
b7
04
09
53
do
51
cd
60
el
e’/
ba
70
el
8c

7c
82
fd
c’/
83
dl
ef
a3
Oc
81
32
c8
78
3e
£8
al

77
c9
93
23
2¢C
00
aa
40
13
4f
3a
37
25
b5
98
89

7o
7d
26
c3
la
ed
fb
8f
ec
dc
Oa
od
2e
66
11
0d

£2
fa
36
18
1b
20
43
92
5f
22
49
8d
1c
48
69
bf

AES Substitution

6b
59
3f
96
be
fc
4d
9d
97
2a
06
a5
ab
03
do
eb

6f
477
£7
05
5a
bl
33
38
44
90
24
de
b4
fo
8e
42

ch
f0
cc
9a
a0
5b
85
5
17
88
5c
a9
cb6
Oe
94
68

30
ad
34
07
52
ba
45
bc
c4
46
c2
bc
e8
ol
9b
41

01
d4
ab
12
3b
cb
£9
b6
a’
ee
d3
56
dd
35
le
99

67
az2
eb
80
do
be
02
da
Te
b8
ac
f4
74
57
87
2d

2b
af
fl
e2
b3
39
7f
21
3d
14
62
ea
1f
b9
e9
0f

fe
9c
71
eb
29
4da
50
10
64
de
91
65
4
86
ce
b0

a7
a4
ds
277
e3
4c
3c
ff
5d
S5e
95
Ta
bd
cl
55
54

ab
72
31
b2
2f
58
9f
f3
19
0b
ed
ae
8b
1d
28
bb

76
cO
15
75
84
ct
ag
d2
73
db
79
08
8a
9e
daf
16

96

AES Shift Rows

ShiftRows rotates bytes within a row:

97

AES Mix Columns

MixColumns “multiplies” each column by a fixed matrix

w R PN
RN W
=N W
N W

98

Processor Support for AES

x86 instructions for AES extension:

AESENC
AESENCLAST
AESDEC
AESDECLAST
AESKEYGENASSIST
AESTIMC

Perform R
Perform R’
Perform inverse of R
Perform inverse of R’

Key sequence helper
Key sequence helper

99

Processor Support for AES

x86 instructions for AES extension:

@ AESENC Perform R

R AESENCLAST Perform R’
v AESDEC Perform inverse of R
AESDECLAST Perform inverse of R’

AESKEYGENASSIST Key sequence helper
AESIMC Key sequence helper

100

Processor Support for AES

x86 instructions for AES extension:

Lo
AESENC Perform R
AESENCLAST Perform R’
R’ AESDEC Perform inverse of R
v AESDECLAST Perform inverse of R’

AESKEYGENASSIST Key sequence helper
AESIMC Key sequence helper

101

Processor Support for AES

x86 instructions for AES extension:

AESENC
AESENCLAST
AESDEC
AESDECLAST
AFESKEYGENASSIST
AESTIMC

Perform R
Perform R’
Perform inverse of R
Perform inverse of R’

Key sequence helper
Key sequence helper

102

Block ciphers mix up individual blocks, but for a given ==, they always

encode a

plaintext

block as a deterministic [dsJalSIgd=4d block

What if your message has a lot of the same block repeated?

https://en.wikipedia.org/wiki/Block cipher mode of operation

104

Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always
encode a |plaintext| block as a deterministic block

What if your message has a lot of the same block repeated?

Instead of
= Encpgs(plaintext;|)
use
= Encags((plaintext;| @

This is known as a mode of operation

105

Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always

encode a |plaintext

block as a deterministic [ds)gllg{>%d block

What if your message has a lot of the same block repeated?

Instead of

APV = Encags(plaintext;

use

N

with |plaintext,

Pick 2 random number to use

and send that number first

AT = Encaps(plaintext;| @ [EBLEREERE

This is known as a mode of operation

106

Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always

encode a |plaintext

block as a deterministic [ds)gllg{>%d block

What if your message has a lot of the same block repeated?

Instead of

APV = Encags(plaintext;

use

This initial value is called an
initialization vector

N

with |plaintext,

Pick 2 random number to use

and send that number first

AT = Encaps(plaintext;| @ [EBLEREERE

This is known as a mode of operation

107

Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always

encode a |plaintext

block as a deterministic [dlsIslg¥=74d block

What if your message has a lot of the same block repeated?

https://en.wikipedia.org/wiki/Block cipher mode of operation

108

Summary

Block ciphers encode chunks using a more complex combination with a

random stream than @
DES — historical, key size was issue, expensive to compute

AES — modern, large key sizes, fast on modern processors

Block ciphers still need a mode of operation to hide larger structure

109

