Block Ciphers

A block cipher encodes a plaintext in blocks of N bits

Each N-bit |plaintext

as opposed to a stream cipher, which can work on a stream of bits

becomes an N-bit [d[s]alSgd ¢

Which is better, a stream cipher or block cipher?

* Neither

* It's complicated

* Just use AES, which is a block cipher



Block Ciphers

A block cipher encodes a plaintext in blocks of N bits

Each N-bit

plaintext

as opposed to a stream cipher, which can work on a stream of bits

becomes an N-bit fdls]allad<s

We'll look at two block ciphers:

Data Encryption Standard (DES): older, broken at original key size

Advanced Encryption Standard (AES): newer, very widely used



DES

Developed in 1970s at IBM, standardized with input from NSA
64-bit block with 56-bit key

Three main components:

* Key schedule generated PRNG-like from the key

<= B B B2y e S
* |16 rounds of Feistel structure mixing with key schedule as input

* Feistel function F to implement mixing

Following pictures are based on
https://en.wikipedia.org/wiki/Data Encryption Standard
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DES Key Schedule

Permuted Choice: V=
shuffle and pick 56 of 64 bits, PC1
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Different rotation amount each step

DES Key Schedule
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shuffle and pick 48 of 56 bits

DES Key Schedule
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shuffle and pick 48 of 56 bits

DES Key Schedule
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DES Feistel Structure

plaintext
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Split plaintext into 32-bit halves

DES Feistel Structure

plaintext
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DES Feistel Structure

New left half is old right half

plaintext

16



DES Feistel Structure

plaintext

New right half depends on
both old halves as mixed
through K and F
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DES Feistel Structure

plaintext

Feistel function F is one-way
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DES Feistel Structure
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DES Feistel Structure
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DES Feistel Structure

@ Decode-step right half is

previous left half
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Decode-step left half depends on
both previous halves as mixed
through K and F

DES Feistel Structure
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DES Feistel Structure
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DES Feistel Structure
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DES Feistel Structure
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DES Feistel Structure
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DES Feistel Structure

’ plaintext ‘ W
v
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! ! are the same function,
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32 bits

DES Feistel Function

48 bits

32 bits
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32 bits

DES Feistel Function

48 bits

32 bits
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32 bits

DES Feistel Function

48 bits

32 bits
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32 bits

DES Feistel Function

48 bits

32 bits
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3DES

By the 1990s, a 56-bit key was too small

3DES is running DES three times:

Enc3pgs(“

P~ = < A B C>

plaintext

) = Encpgs(K A, Decpgs(Kp, Encpgs(K e,

plaintext

)

83



DES Issues

Algorithm was designed for hardware

P bit permutations are a pain to implement in software

with and, or, <<, and >>

Distrust of the secret design process

and especially the

S

S
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AES

Developed by an open competition in the 1990s run by NIST
Variant of an algorithm called Rijndael

128-bit block with 128-, 192-, or 256-bit key

Main components are analogous to DES:

» Key schedule generated from the key
different PRNG-like generator

* |1, I3, or |5 rounds of mixing using key schedule as input

different mixing function

* Reversible mixing function R (instead of Feistel structure)

includes @ of key from schedule
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AES

Developed by an open competition in the 1990s run by NIST
Variant of an algorithm called Rijndael

128-bit block with 128-, 192-, or 256-bit key

Main components are analogous to DES: Each K, is 128 bits

» Key schedule generated from the key
different PRNG-like generator

* |1, I3, or |5 rounds of mixing using key schedule as input

different mixing function

* Reversible mixing function R (instead of Feistel structure)

includes @ of key from schedule
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DES versus AES Structure
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DES versus AES Structure
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DES versus AES Structure
plaintext
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DES versus AES Structure
plaintext

v
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AES Round

View the state as an 4 X 4 array of bytes:
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AES Round

starts as |plaintext

View the state as an 4 X 4 array of bytes:

by bs bg b3

b3 b7 by bys

R(K;, state) = MixColumns(ShiftRows(SubBytes(state))) &

R'(I;, state) = ShiftRows(SubBytes(state)) @ K;

i
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SubBytes looks up a substitution in this table, which is based on a
particular polynomial:

63
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AES Substitution

6b
59
3f
96
be
fc
4d
9d
97
2a
06
a5
ab
03
do
eb

6f
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£7
05
5a
bl
33
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90
24
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10
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76
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75
84
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d2
73
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08
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9e
daf
16

96



AES Shift Rows

ShiftRows rotates bytes within a row:
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AES Mix Columns

MixColumns “multiplies” each column by a fixed matrix
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Processor Support for AES

x86 instructions for AES extension:

AESENC
AESENCLAST
AESDEC
AESDECLAST
AESKEYGENASSIST
AESTIMC

Perform R
Perform R’
Perform inverse of R
Perform inverse of R’

Key sequence helper
Key sequence helper
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Processor Support for AES

x86 instructions for AES extension:

@ AESENC Perform R

R AESENCLAST Perform R’
v AESDEC Perform inverse of R
AESDECLAST Perform inverse of R’

AESKEYGENASSIST Key sequence helper
AESIMC Key sequence helper
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Processor Support for AES

x86 instructions for AES extension:

Lo
AESENC Perform R
AESENCLAST Perform R’
R’ AESDEC Perform inverse of R
v AESDECLAST Perform inverse of R’

AESKEYGENASSIST Key sequence helper
AESIMC Key sequence helper
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Processor Support for AES

x86 instructions for AES extension:

AESENC
AESENCLAST
AESDEC
AESDECLAST
AFESKEYGENASSIST
AESTIMC

Perform R
Perform R’
Perform inverse of R
Perform inverse of R’

Key sequence helper
Key sequence helper
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Block ciphers mix up individual blocks, but for a given ==, they always

encode a

plaintext

block as a deterministic [dsJalSIgd=4d block

What if your message has a lot of the same block repeated?

https://en.wikipedia.org/wiki/Block cipher mode of operation
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Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always
encode a |plaintext| block as a deterministic block

What if your message has a lot of the same block repeated?

Instead of
= Encpgs(plaintext;|)
use
= Encags((plaintext;| @

This is known as a mode of operation
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Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always

encode a |plaintext

block as a deterministic [ds)gllg{>%d block

What if your message has a lot of the same block repeated?

Instead of

APV = Encags(plaintext;

use

N

with |plaintext,

Pick 2 random number to use

and send that number first

AT = Encaps(plaintext;| @ [EBLEREERE

This is known as a mode of operation
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Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always

encode a |plaintext

block as a deterministic [ds)gllg{>%d block

What if your message has a lot of the same block repeated?

Instead of

APV = Encags(plaintext;

use

This initial value is called an
initialization vector

N

with |plaintext,

Pick 2 random number to use

and send that number first

AT = Encaps(plaintext;| @ [EBLEREERE

This is known as a mode of operation
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Cipher Block Chaining

Block ciphers mix up individual blocks, but for a given © ==, they always

encode a |plaintext

block as a deterministic [dlsIslg¥=74d block

What if your message has a lot of the same block repeated?

https://en.wikipedia.org/wiki/Block cipher mode of operation
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Summary

Block ciphers encode chunks using a more complex combination with a

random stream than @
DES — historical, key size was issue, expensive to compute

AES — modern, large key sizes, fast on modern processors

Block ciphers still need a mode of operation to hide larger structure
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