
Users and Resources

Alice

Bob

Eve

fles

database entries

network

1

Users and Resources

Alice

Bob

Eve
ac

ce
ss

co

n
tr
o
l

fles

database entries

network

Access control determines who/what can use a given resource

2

Users and Resources

Alice

Bob

Eve

a
u
th

e
n
ti
ca

ti
o
n

ac
ce

ss

co

n
tr
o
l

fles

database entries

network

3

Users and Resources

Alice

Bob

Eve

a
u
th

e
n
ti
ca

ti
o
n

capability

fles

database entries

network

A capability says what resources can be used

4

Users and Resources

Alice

Bob

Eve

a
u
th

e
n
ti
ca

ti
o
n

capability

ac
ce

ss

co

n
tr
o
l

fles

database entries

network

A typical system uses a mixture of capabilities and access control

5

Users and Resources

Alice

Bob

Eve

a
u
th

e
n
ti
ca

ti
o
n

capability

ac
ce

ss

co

n
tr
o
l

fles

database entries

network

A typical system uses a mixture of capabilities and access control

6

Aside: Objects versus Abstract Datatypes

object-oriented

interface Shape {
 int area();
 int perimeter();
}

class Circle implements Shape {
 int area() { }
 int perimeter() { }
}

class Square implements Shape {
 int area() { }
 int perimeter() { }
}

datatype-oriented

type Shape
| Circle
| Square

fun area(s :: Shape):
 match s
 | Circle:
 | Square:

fun perimeter(s :: Shape):
 match s
 | Circle:
 | Square:

Add new Shape variant without changing old code
Add new Shape operation
without changing old code

New Shape variant
needs change

New Shape
operation
needs change

12

Aside: Objects versus Abstract Datatypes

object-oriented

interface Shape {
 int area();
 int perimeter();
}

class Circle implements Shape {
 int area() { }
 int perimeter() { }
}

class Square implements Shape {
 int area() { }
 int perimeter() { }
}

datatype-oriented

type Shape
| Circle
| Square

fun area(s :: Shape):
 match s
 | Circle:
 | Square:

fun perimeter(s :: Shape):
 match s
 | Circle:
 | Square:

Add new Shape variant without changing old code
Add new Shape operation
without changing old code

New Shape variant
needs change

New Shape
operation
needs change

Each style makes some things easier,
but both can get to the same place

Capability versus access control
is a similar trade-off

13

Authentication Approaches

Authentication relies on something the user...

knows

password

"superSecret"
personal info

mother’s maiden name is Smith

has

private key
phone app RFID email SMS

is

face fngerprint retinal scan signature voice

1�

Authentication Approaches

Authentication relies on something the user...

knows

+ Easy input

- Hard to remember

password

"superSecret"
personal info

mother’s maiden name is Smith

has

+ Likely on hand

- Can be stolen

private key
phone app RFID email SMS

Two-factor
authentication
(2FA)
uses two of these

is

+ Always on hand

- Immutable and imitable

face fngerprint retinal scan signature voice

24

Authentication Result

The result of authentication is a capability

25

Authentication Result

system capability

operating system login each started process has user ID
supplied by parent process

26

Authentication Result

system capability

operating system login each started process has user ID
supplied by parent process

simple network service TCP connection implies user

2�

Authentication Result

system capability

operating system login each started process has user ID
supplied by parent process

simple network service TCP connection implies user

web service login supplies a cookie, which
is sent back with each request

2�

Authentication Tokens as Cookies

User: alice
Password ••••••••••

2�

Authentication Tokens as Cookies

User: alice
Password •••••••••• POST /?login=y HTTP/1.1

Host: msdapp.cs.utah.edu
Content-Type: application/x-www-form-urlencoded
Content-Length: 41

user=alice&passwd=superSecret&post=Log+In

3�

Authentication Tokens as Cookies

User: alice
Password •••••••••• POST /?login=y HTTP/1.1

Host: msdapp.cs.utah.edu
Content-Type: application/x-www-form-urlencoded
Content-Length: 41

user=alice&passwd=superSecret&post=Log+In

HTTP/1.1 302 Found
Location: /
Set-Cookie: MSDAPP_Token=0d27775ad131; Secure
....
<html>Welcome, Alice!....</html>

31

Authentication Tokens as Cookies

User: alice
Password ••••••••••

msdapp.cs.utah.edu:
MSDAPP_Token=0d27775ad131

POST /?login=y HTTP/1.1
Host: msdapp.cs.utah.edu
Content-Type: application/x-www-form-urlencoded
Content-Length: 41

user=alice&passwd=superSecret&post=Log+In

HTTP/1.1 302 Found
Location: /
Set-Cookie: MSDAPP_Token=0d27775ad131; Secure
....
<html>Welcome, Alice!....</html>

32

Authentication Tokens as Cookies

Welcome, Alice!

Menu

msdapp.cs.utah.edu:
MSDAPP_Token=0d27775ad131

33

Authentication Tokens as Cookies

Welcome, Alice!

Menu

msdapp.cs.utah.edu:
MSDAPP_Token=0d27775ad131

GET /menu HTTP/1.1
Host: msdapp.cs.utah.edu
Cookie: MSDAPP_Token=0d27775ad131
....

34

Access Control

Given a current capabilty, such as the current user, access control
determines whether to allow use of a specifc resource

Simple access control: Unix fle permissions

More fexible: access-control list (ACL)

36

Unix Users and File Permissions

Every user belongs to one or more groups

staff

www-admin

db-useralice

3�

Unix Users and File Permissions

Every fle has an owning user plus group and a table:

read write execute
user ✔/✘ ✔/✘ ✔/✘
group ✔/✘ ✔/✘ ✔/✘
others ✔/✘ ✔/✘ ✔/✘

3�

Unix Users and File Permissions

Every fle has an owning user plus group and a table:

read write execute
user ✔=1 ✔=1 ✔=1
group ✔=1 ✘=0 ✔=1
others ✘=0 ✘=0 ✘=0

-rwxr-x---

 111101000
= 0750 octal

For a directory:

• read ⇒ ls

• write ⇒ create fle or subdirectory

• execute ⇒ cd

4�

Unix Users and File Permissions

Every fle has an owning user plus group and a table:

read write execute
user ✔=1 ✔=1 ✔=1
group ✔=1 ✘=0 ✔=1
others ✘=0 ✘=0 ✘=0

-rwxr-x---

 111101000
= 0750 octal

Every process has a current user and group

• login or su changes current user

• login or newgrp changes current group

41

Unix Users and File Permissions

Every fle has an owning user plus group and a table:

read write execute
user ✔=1 ✔=1 ✔=1
group ✔=1 ✘=0 ✔=1
others ✘=0 ✘=0 ✘=0

-rwxr-x---

 111101000
= 0750 octal

Every process has a current user and group

On fle access, check permissions relative to user (and its groups)

On fle creation, assign current user and group as owners

42

Unix Users and File Permissions

#include <unistd.h>
#include <fcntl.h>

int main() {
 close(open("the_new_file",
 O_RDWR | O_CREAT,
 0666));
 return 0;
}

43

Unix Users and File Permissions

#include <unistd.h>
#include <fcntl.h>

int main() {
 close(open("the_new_file",
 O_RDWR | O_CREAT,
 0666));
 return 0;
} Specifes permissions for new fle

44

Unix Users and File Permissions

#include <unistd.h>
#include <fcntl.h>

int main() {
 close(open("the_new_file",
 O_RDWR | O_CREAT,
 0666));
 return 0;
} Specifes permissions for new fle

... removing bits set in umask,
which is also a process property

45

Access Control Lists

Unix traditional fle permissions are specifc to just one user and one group

A fle can have a more general access control list (ACL) with specifc
permissions for multiple users and groups

Per-user permissions might be R/W/X, or permissions might be more
general, depending on the OS and flesystem

Windows

46

Role-Based Access Control (RBAC)

In a setting with many kinds of actions (e.g., Amazon AWS), permissions
can be grouped into roles

To allow a user/service to perform a set of actions, give them the relevant
role

A role is a kind of capability
associated to a user, not a resource

4�

Capabilities Instead of Access Control

In a pure capability-oriented view, all access control is through a capability

• There’s no way to even talk about an action without having that capability

• Capabilities include the possibility of generating and delegating capabilities

For example, a JavaScript program can manipulate a web page, but only
through DOM methods, and there’s no way to perform an action that
doesn’t have a method

4�

Recovocation

Revocation of a capability removes its access

For example, a token/cookie for a network login is revoked
when it expires

When an capability is represented by object, actions on the object may
revoke its capabilities

For example, closing a fle object revokes its ability to read a fle

Support for revocation is a key issue in the design of a capability system

5�

Summary

Authentication is only a frst step:

• authenticated identity can be considered a capability that represents
allowed actions

• this identity/capability might allow use of a resource pending
access control checks

Capabilities and access control represent two sides of the same coin, but
differ in whether they’re associated with an actor or a resource

51

